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For analyzing large-scale engineering problems using numerical methods, parallel computation is an efficient approach. Graph 

partitioning algorithms in the numerical parallel computation have important theoretical significance and practical applications. This 

paper presents a stabilized bordered block diagonal form (SBBDF) of Jacobian matrix in an improved Newton-Raphson (N-R) method 

for solving the problems of nonlinear electromagnetic field. This algorithm can reduce the computing time in parallel computation. It 

bases on graph partitioning algorithm, and is quite competent for large scale parallel computation for possible reduced iteration steps, 

which has been demonstrated by numerical experimental results. 

 
Index Terms—Graph partitioning algorithm, nonlinear magnetic problems, parallel computation, stabilized bordered block diagonal 
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I. INTRODUCTION 

inite element method (FEM) is usually used as a numerical 

approach for solving elliptic partial differential equations, 

particularly suitable for problems with complex geometries. 

FEM is also an effective tool to solve problems of nonlinear 

magnetic field [1]. In electromagnetic field simulation, the 

nonlinear equations can be linearized into linear forms by 

using Newton's method. The popular Newton-Raphson (N-R) 

method has quadratic rate of convergence. When applying the 

N-R method to solving nonlinear problems, it is necessary to 

update the Jacobian matrix and solve the matrix equation in 

each nonlinear iteration. This could be time consuming when 

solving problems with large amount of unknowns [2].  

With the emergence of the first parallel computer in 1972, a 

series of types of the array and vector machines have been 

invented. In the structure of distributed storage system, the 

messaging time between the processors is related to the 

message length and the distance between processors [3]. 

Compared with serial computing, parallel computing can 

greatly shorten the computing time.  

In order to better solve the problem of load balancing in 

parallel computing, it is necessary to use mathematical 

language giving the definition of the problem. The mainstream 

of the existing methods is usually based on task graph [4]. 

Graph partitioning problem has been applied in many areas, 

including scientific computing, information systems, operation 

research and so on [5]. One method of solving equations of 

large systems, called partitioning, has been investigated in a 

number of applications [6]. One of the most proper dividing 

method of parallel processing is making the original graph into 

the matrix with a stabilized bordered block diagonal form 

(SBBDF). Generally, in Newton-Raphson (N-R) method for 

nonlinear electromagnetic problems, the Jacobi matrix 

between two adjacent iteration steps usually is a sparse matrix. 

The characteristics are reflected at the partly change of tangent 

matrix. The graph partition is a dividing and conquering 

algorithm which prevents local change from wide spreading 

[7]. 

In this paper a stabilized bordered block diagonal form 

(SBBDF) is presented to improve the N-R method for 

nonlinear magnetic problems. This SBBDF N-R method is 

based on the graph partitioning of Jacobian matrix and parallel 

computing. It elevates N-R method and makes it more 

efficient. A numerical example is presented for analyzing the 

performance of the employed algorithm. 

II.  STABILIZED BORDERED BLOCK DIAGONAL FORM 

In this report, the algorithm employed in the N-R method 

should be ordered into SBBDF [8]. This is a two-step ordering 

work, first order the matrix M into BBDF as shown in Fig. 2, 

then order it into SBBDF. The entire ordering process needs to 

be worked out before the first iteration of N-R method. 
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Fig. 2. A bordered block diagonal form (BBDF). 

The first step of ordering: 

Now suppose that S is an attachment set in the row graph of 

a matrix M. Once S and the attendant edges have been deleted, 

let 
m1 R,R ，  are the subsets of the set of rows of M. These 

rows correspond to the m components of the row graph. Then 

each column of M has nonzero entries in rows from at most 

one R.  

The second step of ordering: 

At the place of the entries the coupling rows are split, a 

rectangular matrix is constructed. In this case, each new row 

has nonzero entries in only one nonborder block. Then by 

appending new columns, a square matrix is produced. This can 

help to ensure the stretched matrix is structurally non-singular. 

We apply a strategy called “row stretching” to associate with 

BBDF matrix to a larger square matrix with SBBD form. 

III. SBBDF NEWTON-RAPHSON METHOD 

In electromagnetic field, when solving nonlinear problems 

using FEM, we can obtain a matrix equation 

                                          fxJ                                       (1) 

where x  is the unknown increment to be solved. J is the 

nn  sparse and symmetric Jacobian matrix. f is the column 

vector associated with excitations. 

Based on the difference of magnetic reluctivity, the 

Jacobian matrix is permutated into the SBBDF. 
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The solving process based on SBBDF has the following 

steps. 

Step 1. Since in nonlinear electromagnetic problems, only 

part of sparse matrix J is changing, then J can be generated 

into the SBBDF of (2). Take (2) into (1) , then the system of (1) 

becomes: 
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Step 2. The equations (8) can also be formed as: 
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Eliminating p1,2, i,xi
 in (9) can obtain 

sns fxJ                                        (5) 
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Step 3. The following formulas are the foundation of the 

parallel computing. 
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After solving 
nx  from (10), then apply parallel computing 

to (9), we can obtain 
pxxx  ，， 21
. 

When solving (5), since the coefficient matrix JS is a 

symmetric but not sparse matrix, the calculation consuming  

still occupies a large amount of computing time [9]. The 

computing load in one iteration for 
nx , A and B is shown in 

Table I. 
TABLE I 

CALCULATION AMOUNTS IN ONE ITERATION OF SBBDF N-R METHOD 

Items Formula Computing load 

nx  
ss fJ

1-  3/n)n3(n 23   

A in

1

ii JJ   1.5

i )max(n  

B i

1

ii fJ   1.5

i )max(n  

IV. NUMERICAL EXAMPLE 

In order to test the efficiency of the SBBDF N-R method in 

solving magnetic problems, an U-shape electromagnet as 

shown Fig. 3 is taken as an example. The result of using the 

N-R method based on traditional N-R method is shown in Fig. 

3. The comparison of calculation amount of different part of 

SBBDF N-R method is shown in Table II. The comparison of 

total calculation amount of different part is shown in Table III. 

 
Fig. 3.  Flux lines of U-shape electromagnet. 

TABLE II 

CALCULATION AMOUNTS IN ONE ITERATION  

Items Formula Computing load 

nx  1 206 

A 1 61 

B 1 53 

TABLE III 

CALCULATION AMOUNTS WITH DIFFERENT NUMBER OF BLOCKS 

 n=2 n=4 

Items nx  A B nx  A B 

computing 

time (ms) 
1278 432 366 729 324 261 

V.  CONCLUSION 

Compared to traditional N-R method, the SBBDF N-R 

method is able to reduce the computation load in each iteration 

step. According to the pre process of ordering the Jacobian 

matrix, the meshing and coding method can affect the 

computing load. With better mesh, the method can save more 

computing time and be more efficient.  

REFERENCES 

[1] Y. P. Zhao, S. L. Ho, and W. N. Fu, "A Novel Adaptive Mesh Finite 

Element Method for Nonlinear Magnetic Field Analysis," IEEE Trans.  
Magnetics, vol. 49, pp. 1777-1780, May 2013. 

[2] B. Heise, "Nonlinear Simulation of Electromagnetic-Fields with Domain 

Decomposition Methods on MIMD Parallel Computers," Journal of 
Computational and Applied Mathematics, vol. 63, pp. 373-381, Nov. 20 

1995. 

[3] R. F. Lucas, T. Blank, and J. J. Tiemann, "A Parallel Solution Method for 
Large Sparse Systems of Equations," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 6, pp. 981-991, 

Nov 1987. 
[4] Y. F. Hu and J. Scott, "Ordering techniques for singly bordered block 

diagonal forms for unsymmetric parallel sparse direct solvers," 

Numerical Linear Algebra with Applications, vol. 12, pp. 877-894, Nov. 
2005. 

[5] G. Karypis and V. Kumar, "A parallel algorithm for multilevel graph 

partitioning and sparse matrix ordering," Journal of Parallel and 
Distributed Computing, vol. 48, pp. 71-95, Jan. 10 1998. 

[6] M. Vlach, "LU Decomposition and Forward-Backward Substitution of 

Recursive Bordered Block Diagonal Matrices," IEEE Proceedings-G 
Circuits Devices and Systems, vol. 132, pp. 24-31, 1985. 

[7] Q. Song, P. Chen, and S. L. Sun, "Partial Refactorization in Sparse 

Matrix Solution: A New Possibility for Faster Nonlinear Finite Element 
Analysis," Mathematical Problems in Engineering, 2013. 

[8] I. S. Duff and J. A. Scott, "Stabilized bordered block diagonal forms for 

parallel sparse solvers," Parallel Computing, vol. 31, pp. 275-289, Mar-
Apr 2005. 

[9] W. F. Tinney and W. S. Meyer, "Solution of Large Sparse Systems by 

Ordered Triangular Factorization," IEEE Trans. Automatic Control, vol. 
Ac18, pp. 333-346, 1973. 

 


